2,809 research outputs found

    A Highly Digital VCO-Based ADC With Lookup-Table-Based Background Calibration

    Get PDF
    CMOS technology scaling has enabled dramatic improvement for digital circuits both in terms of speed and power efficiency. However, most traditional analog-to-digital converter (ADC) architectures are challenged by ever-decreasing supply voltage. The improvement in time resolution enabled by increased digital speeds drives design towards time-domain architectures such as voltage-controlled-oscillator (VCO) based ADCs. The main challenge in VCO-based ADC design is mitigating the nonlinearity of VCO Voltage-to-frequency (V-to-f) characteristics. Achieving signal-to-noise ratio (SNR) performance better than 40dB requires some form of calibration, which can be realized by analog or digital techniques, or some combination. This dissertation proposes a highly digital, reconfigurable VCO-based ADC with lookup-table (LUT) based background calibration based on split ADC architecture. Each of the two split channels, ADC A and B , contains two VCOs in a differential configuration. This helps alleviate even-order distortions as well as increase the dynamic range. A digital controller on chip can reconfigure the ADCs\u27 sampling rates and resolutions to adapt to various application scenarios. Different types of input signals can be used to train the ADC’s LUT parameters through the simple, anti-aliasing continuous-time input to achieve target resolution. The chip is fabricated in a 180 nm CMOS process, and the active area of analog and digital circuits is 0.09 and 0.16mm^2, respectively. Power consumption of the core ADC function is 25 mW. Measured results for this prototype design with 12-b resolution show ENOB improves from uncorrected 5-b to 11.5-b with calibration time within 200 ms (780K conversions at 5 MSps sample rate)

    One size does not fit all: the differential impact of online reviews

    Get PDF
    There has been plenty of research on the impact of online reviews on product sales in the last decade. However, prior studies don’t always reach the same conclusions. Literature review indicates that, because of data limitations, prior studies treat the consumers as homogeneous and ignore their individual characteristics. There has only been very limited research that delves into the characteristics of the products being reviewed. Do online reviews have the same impact on consumers who may have different shopping habits or demographic characteristics? Do online reviews also impact the sales of all products/services to the same extent? Using a unique dataset that includes individually identifiable consumer online review browsing data and purchase data, this paper analyzes the effect of online reviews from a more nuanced perspective by examining how individual consumer shopping characteristics and vendor characteristics moderate the effect of online reviews as well as vendors’ marketing activities

    Variable Nanoparticle-Cell Adhesion Strength Regulates Cellular Uptake

    Get PDF
    In receptor-mediated endocytosis, cells exercise biochemical control over the mechanics of adhesion to engulf foreign particles, featuring a variable adhesion strength. Here we present a thermodynamic model with which we elucidate that the variable adhesion strength critically governs the cellular uptake, yielding an uptake phase diagram in the space of ligand density and particle size. We identify from the diagram an endocytosed phase with markedly high uptake, encompassed by a lower and an upper phase boundary that are set, respectively, by the enthalpic and entropic limits of the adhesion strength. The phase diagram may provide useful guidance to the rational design of nanoparticle-based therapeutic and diagnostic agents

    One-particle-thick, Solvent-free, Course-grained Model for Biological and Biomimetic Fluid Membranes

    Get PDF
    Biological membranes are involved in numerous intriguing biophysical and biological cellular phenomena of different length scales, ranging from nanoscale raft formation, vesiculation, to microscale shape transformations. With extended length and time scales as compared to atomistic simulations, solvent-free coarse-grained membrane models have been exploited in mesoscopic membrane simulations. In this study, we present a one-particle-thick fluid membrane model, where each particle represents a cluster of lipid molecules. The model features an anisotropic interparticle pair potential with the interaction strength weighed by the relative particle orientations. With the anisotropic pair potential, particles can robustly self-assemble into fluid membranes with experimentally relevant bending rigidity. Despite its simple mathematical form, the model is highly tunable. Three potential parameters separately and effectively control diffusivity, bending rigidity, and spontaneous curvature of the model membrane. As demonstrated by selected examples, our model can naturally simulate dynamics of phase separation in multicomponent membranes and the topological change of fluid vesicles

    Electrochemically driven mechanical energy harvesting

    Get PDF
    Efficient mechanical energy harvesters enable various wearable devices and auxiliary energy supply. Here we report a novel class of mechanical energy harvesters via stress–voltage coupling in electrochemically alloyed electrodes. The device consists of two identical Li-alloyed Si as electrodes, separated by electrolyte-soaked polymer membranes. Bending-induced asymmetric stresses generate chemical potential difference, driving lithium ion flux from the compressed to the tensed electrode to generate electrical current. Removing the bending reverses ion flux and electrical current. Our thermodynamic analysis reveals that the ideal energy-harvesting efficiency of this device is dictated by the Poisson’s ratio of the electrodes. For the thin-film-based energy harvester used in this study, the device has achieved a generating capacity of 15%. The device demonstrates a practical use of stress-composition–voltage coupling in electrochemically active alloys to harvest low-grade mechanical energies from various low-frequency motions, such as everyday human activities.National Science Foundation (U.S.) (CBET-1240696)Samsung Scholarship FoundationKwanjeong Educational Foundatio

    Getting the best out of your crowdsourcing contest

    Get PDF

    Biofilms as self-shaping growing nematics

    Full text link
    Active nematics are the nonequilibrium analog of passive liquid crystals in which anisotropic units consume free energy to drive emergent behavior. Similar to liquid crystal (LC) molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions; however, unlike passive liquid crystals, active nematics, such as those composed of living matter, have the potential to regulate their boundaries through self-generated stresses. Here, using bacterial biofilms confined by a hydrogel as a model system, we show how a three-dimensional, living nematic can actively shape itself and its boundary in order to regulate its internal architecture through growth-induced stresses. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model considering the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary defines the orientational ordering of cells and the emergence of topological defects in the interior of the biofilm. Our findings reveal novel self-organization phenomena in confined active matter and provide strategies for guiding the development of programmed microbial consortia with emergent material properties

    Optimizing vestibular neuritis management with modular strategies

    Get PDF
    ObjectiveThis study proposes a “modular management” approach for vestibular neuritis (VN) to reduce chronicization and improve patient prognosis. The approach involves multi-factor grading and hierarchical intervention and was found to be more effective than traditional treatment strategies.MethodsThis retrospective analysis compared two groups of VN patients from two medical institutions. The intervention group of 52 patients received “modular management,” while the control group of 51 patients did not receive this kind of management. Analyzed the early treatment strategies, 6-month prognosis, and other indicators of the two groups of patients, compared and analyzed their overall prognosis, and identified the risk factors affecting the chronicization.ResultsThe modular management group had lower dizziness severity, better balance, lower anxiety, and higher video head impulse testing (v-HIT) gain after 6 months of onset. Analysis of factors related to persistent postural-perceptual dizziness (PPPD) in patients with VN showed positive correlations between the time from onset to diagnosis and PPPD, and Vertigo Symptom Scale (VSS), Dizziness Handicap Inventory (DHI), anxiety, and depression. Normalized vestibular rehabilitation was negatively correlated with PPPD, while gender, age, and early steroid use had no significant correlation. The multi-factor logistic regression model correctly classified 93.20% of the study subjects with a sensitivity of 87.50% and specificity of 94.90%.ConclusionThe proposed “modular management” scheme for VN is a comprehensive and dynamic approach that includes health education, assessment, rehabilitation, therapy, evaluation, and prevention. It can significantly improve patient prognosis and reduce chronicization by shifting from simple acute treatment to continuous management

    Mitral valve aneurysms: echocardiographic characteristics, formation mechanisms, and patient outcomes

    Get PDF
    BackgroundThe accurate etiology of mitral valve aneurysm (MVA) formation is not completely understood, and the most effective management approach for this condition remains controversial.MethodsWe retrospectively analyzed 20 MVA patients who underwent either surgical interventions or conservative follow-ups at the Zhongnan Hospital of Wuhan University between 2017 and 2021. We examined their clinical, echocardiographic, and surgical records and tracked their long-term outcomes.ResultsOf the 20 patients, 12 were diagnosed with MVA using transthoracic echocardiography, seven required additional transesophageal echocardiography for a more definitive diagnosis, and one child was diagnosed during surgery. In all these patients, the MVAs were detected in the anterior mitral leaflet. We found that 15 patients (75%) were associated with infective endocarditis (IE), whereas the remaining patients were associated with bicuspid aortic valve and moderate aortic regurgitation (AR) and mild aortic stenosis (5%), congenital heart disease (5%), elderly calcified valvular disease (5%), mitral valve prolapse (5%), and unknown reasons (5%). Of the 17 patients who underwent hospital surgical interventions, two died due to severe cardiac events. The remaining 15 patients had successful surgeries and were followed up for an average of 13.0 ± 1.8 months. We observed an improvement in their New York Heart Association functional class and mitral regurgitation and AR degrees (P-value < 0.001). During follow-up, only one infant had an increased left ventricular end-diastolic diameter and left ventricular end-systolic diameter, whereas the remaining 14 patients had decreased values (P < 0.001). In addition, none of the three conservatively managed patients experienced disease progression during the 7–24 months of follow-up.ConclusionsWe recommend using echocardiography as a highly sensitive method for MVA diagnosis. Although most cases are associated with IE or AR, certain cases still require further study to determine their causes. A prompt diagnosis of MVA in patients using echocardiography can aid in its timely management

    The role of vacancy defects and holes in the fracture of carbon nanotubes."

    Get PDF
    Abstract We present quantum mechanical calculations using density functional theory and semiempirical methods, and molecular mechanics (MM) calculations with a Tersoff-Brenner potential that explore the role of vacancy defects in the fracture of carbon nanotubes under axial tension. These methods show reasonable agreement, although the MM scheme systematically underestimates fracture strengths. One-and two-atom vacancy defects are observed to reduce failure stresses by as much as 26% and markedly reduce failure strains. Large holes -such as might be introduced via oxidative purification processes -greatly reduce strength, and this provides an explanation for the extant theoretical-experimental discrepancies. Ă“ 2004 Published by Elsevier B.V
    • …
    corecore